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a b s t r a c t

The present work is on bifurcation and stability of fully-developed forced convection in a tightly curved
rectangular duct. Seven symmetric and four asymmetric solution branches were found. The physical
mechanism and driving forces for generating various flow structures are discussed. The flow stability
on various branches is determined by direct transient computation on dynamic responses of the multiple
solutions. As Dean number increases, finite random disturbances lead the flows from a stable steady state
to another stable steady state, a periodic oscillation, an intermittent oscillation, another periodic oscilla-
tion and a chaotic oscillation. The features of flow oscillations are examined by Hilbert spectral analysis.
The mean friction factor and the mean Nusselt number are obtained for all physically-realizable flows. A
significant enhancement of heat transfer can be achieved at the expense of a slight increase of flow
friction.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The present work addresses the fully-developed bifurcation and
stability of the forced convection in a tightly curved rectangular
duct with large aspect ratio (Dean Problem). Flows through a
curved rectangular duct have attracted considerable attention be-
cause of its numerous applications in chemical and mechanical
engineering. For example, curved rectangular passages are exten-
sively used in heat exchangers, ventilators, gas turbines, aircraft in-
takes and centrifugal pumps. Studies of flows through curved
rectangular ducts with various aspect ratios have been made
experimentally and numerically. Cheng and Akiyama [1] employed
aspect ratio ranging from 0.2 to 5 and found the secondary flow.
Yee et al. [2] examined numerically steady laminar flows in ducts
with aspect ratios of 0.33, 1 and 3 under the constant temperature
boundary conditions. Komiyama et al. [3] numerically studied sec-
ondary flows and predicted Nusselt numbers in curved ducts of as-
pect ratios from 0.8 to 5. Ligrani and Niver [4] conducted
experiments for the ducts with aspect ratios varying from 1 to
40. Thangam and Hur [5] made investigation of laminar secondary
flows. Finlay and Nandakumar [6] studied the flow in the ducts
ll rights reserved.
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with large aspect ratios (about 20 and 30) by the perturbation meth-
od. For the ducts of aspect ratio 40, Ligrani et al. [7] found that exter-
nal heating at the outer wall affect the formation of secondary
vortices more strongly than the case of heating at the inner wall.
Chandratilleke and Nursubyakto [8] studied secondary flows
through curved rectangular ducts of aspect ratios from 1 to 8. The
number of Dean vortices is strongly affected by the duct aspect ratio.
Convective heat transfer is significantly enhanced by the secondary
flow, particularly when the Dean vortices appear at the outer wall.

Yanase and Nishiyama [9] found multiple solutions of the flow
through a curved duct of large curvature ratio. They obtained two
kinds of solutions: the two-cell solution and the four-cell solution
for the same aspect ratio from 3.02 to 5. A comprehensive bifurcation
study of laminar flows through a curved rectangular duct was made
by Yanase et al. [10] for a wide range of aspect ratio without thermal
effect. It was found that more and more steady solutions will appear
as the aspect ratio increases and the flows tended to have a larger
number of Dean vortices as streamwise velocity increases [10].

Dennis and Ng [11], Nandakumar and Masliyah [12] and Yanase
et al. [13] made the study of dual flow solutions. Winters [14]
made a detail investigation on the flow through a curved rectangu-
lar duct of aspect ratio from 1 to 2. The locations of limit points and
symmetry-breaking bifurcation points change as the aspect ratio
varies. As aspect ratio increases beyond 1.426, the solution struc-
ture changes: the two-cell flow branch becomes continuous at all
axial pressure gradients and the secondary four-cell branch is
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Nomenclature

a duct width
b duct height

c1 ¼ � @P
Rc@/

streamwise pressure gradient

c2 ¼ @T
Rc@/ streamwise temperature gradient

dh = 2ab/(a + b) hydrodynamic diameter

De ¼ Re
ffiffiffiffi
r
p

Dean number

Dk ¼ rdhW1
4m pseudo-Dean number

(fRe)0 average product of friction factor and Reynolds number
for the straight ducts

(fRe)L local product of friction factor and Reynolds number
fRe average product of friction factor and Reynolds number
Nu0 average Nusselt number for the straight ducts
NuL local Nusselt number
Nu average Nusselt number
p ¼ P

qðm=dhÞ2
dimensionless pressure

P pressure of the fluid
Pr ¼ m

a Prandtl number of the fluid

r ¼ R
dh

dimensionless coordinates
R coordinate
Rc curvature radius
Re ¼ dhWm

m Reynolds number
t time
T temperature of the fluid
Tw wall temperature
u ¼ dhU

m dimensionless velocity component along R-direction

U velocity component along R-direction
v ¼ dhV

m dimensionless velocity component along Z-direction
V velocity component along Z- direction
w ¼ W

W1
dimensionless velocity component along /-direction

W velocity component along /-direction
wm mean streamwise velocity

W1 ¼ d2
hc1
l representative streamwise velocity

y dependent-variable vector
z ¼ Z

dh
dimensionless coordinates

Z coordinate

Greek Symbols
a thermal diffusivity
DT=Pr dhc2 representative temperature difference
l viscosity of the fluid
m kinematic viscosity;
q density of the fluid;
c ¼ b

a aspect ratio of rectangular cross section

h ¼ TW�T
T dimensionless temperature of the fluid

hb dimensionless bulk temperature of the fluid
hm mean dimensionless temperature of the fluid
r ¼ dh

Rc
curvature ratio of the duct

s ¼ t
m=d2

h
dimensionless time

/ coordinate
wmax maximum value of secondary flow stream function
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completely disconnected from the primary two-cell branch. All
solutions except the primary two-cell flow are predicted to be
unstable. Nandakumar and Weinitschke [15] also observed the
change in connectivity of the solution branches past the transcrit-
ical points. This stimulates the present work to detail the flow
bifurcation in curved ducts with a larger aspect ratio.

Yanase et al. [16] and Yanase et al. [17] studied numerically the
flows through a curved rectangular duct with an aspect ratio of 2
by the spectral method with and without a temperature difference
between the outer and inner walls. There exist three solution
branches for the isothermal case (two symmetric and one asym-
metric) and five solution branches for non-isothermal case (one
symmetric and four asymmetric) at different Grashof number.
With an increase in Dean number, the flow evolves from a stable
state to a periodic flow and then to a chaotic state. However, no
study has been found on the flow bifurcation and stability in
curved ducts with a large aspect ratio up to 10 in the literature.
Furthermore, the study on physical mechanism and driving forces
Z’ 
Z Pressure-driven 

main flow 

φ

Inner wall 

Rc

Fig. 1. Physical problem an
for generating various flow structure as well as the characteristics
of flow oscillations is very limited.

Therefore, the objective of this study are: (a) to make a rela-
tively comprehensive study on the flow bifurcation and stability
for the laminar forced convection in tightly curved rectangular
ducts of curvature ratio 0.5 and aspect ratio 10 (Fig. 1), (b) to
examine the physical mechanism and driving forces for generating
various flow structures, and (c) to make spectral analysis on the
features of flow oscillations.

2. Governing equations and numerical methods

Consider hydrodynamically and thermally fully-developed
laminar flow in tightly curved ducts of curvature ratio 0.5 and
aspect ratios 10 (Fig. 1). The finite pitch effect is not considered.
Properties of the fluid are taken to be constant. The gravitational
force is combined with the pressure term. For the the coordinate
system (R, Z, /) in Fig. 1, the governing equations read [18–20],
Upper wall 

Lower wall 

Outer wall 

Centrifugal force 

R 

d coordinate system.
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Table 1
Location variation of some limit and bifurcation points in terms of their De values with gr

Points Grids De

S1
2

10 � 100 n
20 � 200 113.62
40 � 400 114.12

S5
3

10 � 100 200.11
20 � 200 155.48
40 � 400 155.45

S1
4

10 � 100 n
20 � 200 132.42
40 � 400 133.16

S3
4

10 � 100 n
20 � 200 115.91
40 � 400 116.76

S4
4

10 � 100 148.03
20 � 200 156.61
40 � 400 155.24
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Energy equation:
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where the terms labeled by r;s;t and u are the inertial force,
centrifugal force, pressure and viscous force, respectively. Their
dimensionless form is [18–20],
id size.

Points Grids De

S5
4

10 � 100 n
20 � 200 124.27
40 � 400 124.74

S5
5

10 � 100 n
20 � 200 148.03
40 � 400 147.77

S6
5

10 � 100 n
20 � 200 139.24
40 � 400 138.94

S1
7

10 � 100 n
20 � 200 141.34
40 � 400 140.98

A1
1

10 � 100 n
20 � 200 136.12
40 � 400 136.01

1200 1600 2000
k

bifurcation structures.
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Fig. 3. Solution branches and their connectivity.
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Table 2
Locations of all limit and bifurcation points up to Dk = 2000 at r = 0.5, c = 10 and
Pr = 7.0.

Points Dk De Points Dk De

S1
2

876.95 113.62 S2
6

1713.88 210.44

S1
3ðB5Þ 1200.00 152.98 S3

6
1636.95 200.11

S2
3

1207.30 153.82 S1
7

1168.53 141.34

S3
3

1206.48 153.64 A1
1

1077.53 136.12

S3
4

1251.02 157.28 A1
3

1539.07 180.34

S5
3

1241.30 155.48 A2
3

1201.34 144.15

S1
4

1030.21 132.42 A3
3

1539.04 180.33

S2
4

1084.14 137.20 A4
3ðB8Þ 1184.18 142.64

S3
4

902.35 115.91 A1
4

1455.17 171.38
4 1283.19 156.61 B 1001.40 128.98
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Continuity equation:
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Momentum equations:
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Energy equation:
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Here the dimensionless variables are defined by [19,20]

r ¼ R
dh
; z ¼ Z

dh
; s ¼ t

m=d2
h

; u ¼ dhU
m
; v ¼ dhV

m
; w ¼ W

W1
;

p ¼ P

qðm=dhÞ2
; h ¼ Tw � T

DT
;

where W1 ¼ d2
hc1
l ; c1 is a positive constant for hydrodynamically fully-

developed flow. In DT = Prdhc2, c2 ¼ @T
Rc@/

(a positive constant when the
fluid is heated and a negative constant when the fluid is cooled
[21,22]). W1 and DT are used for the non-dimensionalization of the
axial velocity and temperature respectively as in Yang [23].

r, c, Pr and Dk are the four dimensionless parameters. r and c
are geometrical parameters. Pr is a thermophysical property para-
mete. Dk is the dynamic parameter that is the ratio of the square
root of the product of inertial and centrifugal forces to the viscous
force, and characterizes the effect of inertial and centrifugal forces
[19,21,24].

Boundary conditions (non-slip, impermeability and uniform
peripheral temperature) may be written as, in terms of dimension-
less variables,

u ¼ v ¼ w ¼ h ¼ 0 at r ¼ 0;
1
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1190.10 147.51 B7 1003.38 125.57

S5
5

1206.04 148.03 B9 1455.28 171.39

S6
5

1144.23 139.24 B10 1201.25 144.14

S1
6

1667.57 207.01
u ¼ v ¼ w ¼ h ¼ 0 at z ¼ �1
4
ð1þ cÞ; 1

4
ð1þ cÞ; for 0 � r

� 1
2

1þ 1
c

� �
: ð12Þ

The governing Eqs. (6)–(10) under the boundary conditions (11) and
(12) are solved without unsteady terms for the steady bifurcation
structure, and then solved with unsteady terms for the dynamic sta-
bility of multiple solutions to finite random disturbances by direct
transient computation. After velocity fields obtained, the Dean
number De can be calculated.

For the steady bifurcation structure, the governing differential
Eqs. (6)–(10) are discretized under the boundary conditions (11)
and (12) by the finite volume method to obtain discretization
equations. The discretization equations are solved for parameter-
dependence of flow and temperature fields by Euler–Newton con-
tinuation with the solution branches parameterized by the pseudo-
Dean number Dk or the local variable. The bifurcation points are
detected by the test function developed by Seydel [25,26]. The
branch switching is made by a scheme that approximates the dif-
ference between branches proposed by Seydel [25,26]. The readers
are referred to [27] for the numerical details.

For transient computation aiming for the response of multiple
steady solutions to the finite two-dimensional random distur-
bances, we obtain the discretization equations by integrating the
governing equations with the time dependent terms over every
control volume and over the time period from s to s + Ds (the finite
volume method). The fully implicit method is used because of its
superior numerical stability. The system of discretization equa-
tions is then solved by the Euler–Newton method by viewing time
s as the continuation parameter. The initial condition at s = 0,
which also serves as the starting point of the continuation scheme,
is formed by the steady solution ys(Dk) plus a finite random distur-
bance. Here, the subscript s denotes the steady solution. The ran-
dom disturbance is generated by d(k)v(k)ys(Dk). Here d is the
maximum percentage of disturbing value over the steady value
ys. The superscript k represents the ordinal of the disturbance. v
is a vector whose components take random values from �1 to 1
and are generated by the computer. To examine dynamic re-
sponses of a steady solution to different finite random distur-
bances, we normally generate three sets of disturbances denoted
by k = 1, 2, and 3, with d = 10%, 15%, and 30% respectively. The
characteristics of the temporal oscillation are studied by Hilbert
spectral analysis [28,29].

The local product of the friction factor and Reynolds number
(fRe)L and Nusselt number NuL can be written as [19],
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where wm is the mean dimensionless streamwise velocity, and hb is
the dimensionless bulk mean temperature. We obtain their average
values fRe and Nu by peripherally averaging local values.

3. Grid-dependence check and accuracy check

We check the grid dependence by three pairs of grid sizes,
10 � 100, 20 � 200 and 40 � 400, uniformly distributed in the flow
domain. The pair of numbers (L � K) represents the number of grid
points used in r and z directions, respectively. Fig. 2 shows the
bifurcation diagrams obtained by these three pair of grid sizes. In
Fig. 2, the u velocity component at r = 0.9 and z = 0.14 is used as
the state variable and Dk as the parameter. It shows that the quan-
titative change is small from 20 � 200 to 40 � 400. Table 1 lists
location variations of some limit and bifurcation points in terms
of their De values as grid sizes. The general trend of these results
tends to indicate that the solutions for the case of (20 � 200) grids
are accurate to within 1% tolerance. We also checked the detailed
variations of flow and temperature fields on various solution
branches for different grid sizes, and found that 20 � 200 is indeed
a reasonably accurate choice for the grid size. It is worth noting
that the CPU time increases rapidly as the grid spacing decreases
(the computations were carried out on the High Performance
Computing (HPC) cluster in the University of Hong Kong).



Fig. 5. Flow, temperature, pressure and centrifugal force fields on different branches at different Dk: (i) Pressure; (ii) Centrifugal force; (iii) Streamwise velocity; (iv)
Temperature; (a) Dk = 602 on S1; (b) Dk = 880 on S2-2; (c) Dk = 1000 on S2-2; (d) Dk = 1500 on S2-2; (e) Dk = 1230 on S3-2; (f) Dk = 1250 on S3-2; (g) Dk = 1000 on S4-5.
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Therefore, all our computations are made with a 20 � 200 uniform
mesh in order to have a balance between the computational cost
and the solution accuracy. The details of accuracy check are avail-
able in [27].

4. Results and discussion

4.1. Flow structures

The Solution branches and their connectivity are shown in Fig. 3
where S stands for symmetric solutions with respect to the
horizontal central plane z = 0 and A for asymmetric solutions. Limit
points of the branches are denoted by their branch symbol with a
superscript number and bifurcation points are denoted by B with
an ordinal number. For example, S2

1 represents the second limit
point on the solution branch S1. Eleven solution branches S1, S2,
S3, S4, S5, S6, S7, A1, A2, A3 and A4 are found in the Dk range from 0
to 2000. The primary branch S1 is symmetric and has four bifurca-
tion points B1, B2, B3 and B4 that originate four symmetric branches
S2, S3, S5 and S6. Branch S3 has one bifurcation point B5, originating a
symmetric branch S4. Branch S4 has two bifurcation points B6 and
B7 that generate asymmetric branches A1 and A2 respectively.
Branch S5 has two bifurcation points B8 and B9, leading to branches
A3 and A4 respectively. Branch S7 is connected with branch A3 at
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bifurcation point B10. The branch connectivity and some limit
points are shown in the locally-enlarged state diagrams in Fig. 3.
Each pair of singular points ðB5; S

1
3Þ and ðB8;A

4
3Þ represents a single

point of higher nullity in the continuous problem. The pair of
singular points ðB10;A

2
3Þ are very close. Their slight separation

may be an artifact of the numerical discretization. It is noted that
all intersecting points except the ten bifurcation points should
not be interpreted as connection points in this 1D projection of N
dimensional solution branches. Table 2 lists Dk and De values of
ten bifurcation points B1 to B10 and 27 limit points.

Symmetric branch S1. The primary branch S1 is a symmetric
branch with four bifurcation points B1–B4 (Fig. 3). The flow struc-
ture changes along this branch due to the imbalance between the
pressure gradient and the centrifugal force. The typical secondary
flows on various solution sub-branches are shown in Fig. 4. A vor-
tex with a positive (negative) value of the secondary flow stream
function indicates a counterclockwise (clockwise) circulation.
Secondary flow on S1 is essentially a symmetric 2-cell structure
(two Ekman vortices, Fig. 4(a)). The length of two Ekman vortices
is three or four times longer than their width. This results from a
large duct aspect ratio. Fig. 5 shows the variation of flow,
temperature, pressure and centrifugal force fields on various
sub-branches with Dk value. The stream function, axial velocity,
temperature, pressure and centrifugal force are normalized by
their corresponding maximum absolute values |w|max, wmax, hmax,
pmax and fmax in Figs. 4 and 5. For the flow in Fig. 4(a), the pres-
sure gradient across the duct in the radial direction is positive
(Fig. 5(a)–(i)). The centrifugal force acts toward the outer wall
and decreases from a maximum value to zero at the wall
(Fig. 5(a)–(ii)). The secondary flow driven by centrifugal force
affects the streamwise velocity and temperature. Maximum
velocity peak appears in the duct core region (Fig. 5(a)–(iii)),
which is different from the flow in square curved ducts [30].
Along the upper and lower walls, inward secondary flow brings
the relatively cold (non-dimensional temperature close to zero)
fluid from the outer wall to the inner wall; the colder fluid from
the inner wall flows towards the outer wall, around the core
region, and isolates the warmer fluid in the core region and two
regions near the upper and lower walls. Thus two temperature
valleys appear between two end peaks and the middle peak
(Fig. 5(a)–(iv)). This also differs from that in square ducts [30].
As Dk increases, the Ekman vortices become stronger.

Symmetric branch S2. The primary branch S1 has a bifurcation
point B1 at Dk = 1001.40 (De = 128.98). It originates a symmetric
solution branch S2 which is divided into two parts S2-1 and S2-2

by limit point S1
2 (Fig. 3). Secondary flow on S2-1 is essentially a

symmetric 2-cell structure, similar to that in Fig. 4(a) (two Ekman
vortices). As Dk increases, the Ekman vortices become stronger.
Flow on S2-2 is a symmetric 8-cell structure at low Dk value (one
pair of Ekman vortices and three pairs of weak Dean vortices,
Fig. 4(b)). The isolines of the pressure and centrifugal force are
wave-shaped (Fig. 5(b)–(i), (ii)). In the core region of the duct,
the streamwise velocity is distorted and the central temperature
peak is divided into two peaks (Fig. 5(b)–(iii), (iv)) due to Dean vor-
tices at the center. As Dk increases, the pair of center Dean vortices
grow while the other two pairs of Dean vortices disappear (Fig. 4(c)
and (d)). Isovels and isotherms are tightly spaced near the central
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inner wall and sparsely spaced near the central outer wall because
of the inward secondary flow in the core region of the duct
(Fig. 5(b), (c), (d)–(iii) and (b), (c), (d)–(iv)).

Symmetric branch S3. The primary branch S1 has a second bifur-
cation point B2 at Dk = 1201.00 (De = 153.10). It yields a symmet-
ric solution branch S5 which is divided into four sub-branches, S3-

1–S3-4, by three limit points S3
3; S

4
3andS5

3 (Fig. 3). While the sub-
branch S3-1 contributes, through the two limit points S1

3 and S2
3,

three solutions for any value of Dk in a very small range
1200.00 < Dk < 1207.30, the difference among these three solu-
tions is negligibly small. Flow on S3-1 is 2-cell, similar to that on
S2-1 (Fig. 4(a)). This is due to the similarity of pressure and centrif-
ugal force fields between them. Thus their streamwise velocity
and temperature are also similar. Limit point S3

3 leads to appear-
ance of one pair of Dean vortices in the region near the central
outer wall on S3-2 due to the Dean instability (Figs. 4(e) and
5(e)–(i), (ii), [31]). Then another pair of Dean vortices appear be-
cause of the splitting of the original pair by the Eckhaus instability
(Figs. 4(f) and 5(f)–(i), (ii)). Thus flow on S3-2 is a 6-cell. The flow
on S3-3 is also a 6-cell with stronger Dean vortices than those on
S3-2. Isovels and isotherms near the inner and outer walls change
from smooth to wave-shaped as the Dean vortices appear and
grow (Fig. 5(e), (f)–(iii) and (e), (f)–(iv)). Driven by the strong in-
ward secondary flow, the cold fluid flows from the center outer
wall to the core region, thus one temperature valley appears in
the center of the duct with temperature peaks nearby (Fig. 5(e)
and (f)–(iii) and (e) and (f)–(iv)).The limit point S4

3 leads two pairs
of center vortices on S3-3 to merge and become one pair. Thus the
flow on S3-4 becomes a 4-cell state (Fig. 4(g)). This is due to the
Eckhaus instability.
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Symmetric branch S4. The symmetric branch S3 has a bifurcation
point B5 at Dk = 1200.00 (De = 152.98) that yields a symmetric
branch S5

4. Branch S4 has five limit points S1
4 � S4 which divide the

branch into six parts S4-1–S4-6 (Fig. 3). The flow on S4-1 is 2-cell.
The pressure, centrifugal force, streamwise velocity and tempera-
ture fields on S4-1 are similar to those on S1 (Fig. 4(a)). The limit
point S1

4 leads the 2-cell flow on S4-1 to a 4-cell structure on S4-2

(Fig. 4(h)). The flows on S4-3 and S4-4 are 6-cell (Fig. 4(i)). The flows
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on S4-5 and S4-6 are 8-cell (Fig. 4(j)). Additional Dean vortices occur
between two end Ekman vortices on these sub-branches due to the
instability. The alternating appearance of counterclockwise- and
clockwise-circulating center vortices leads the isovels and iso-
therms along the inner wall and the outer wall to be wave-shaped
through their impinging and retreating effects (Fig. 5(g)–(iii) and
(g)–(iv)).

Symmetric branch S5. The primary branch S1 has a third bifurca-
tion point B3 at Dk = 1270.84 (De = 161.43), originating a symmet-
ric solution branch S5. This branch is divided into seven sub-
branches S5-1–S5-7 by six limit points S1

5 � S6
5 (Fig. 3). The flows on

S5-1 and S5-2 are 2-cell. The flow, temperature, pressure and centrif-
ugal force fields on S5-1 and S5-2 are similar to those on S1 (Fig. 4(a)).
One pair of Dean vortices appear in the region near the center of
outer wall (Fig. 4(k)). The limit point S3

5 leads the 4-cell flow on
S5-3 (Fig. 4(k)) to be 8-cell on S5-4 (Fig. 4(l)). With the decrease of
Dk value, the Dean vortices on S5-4 become stronger and the fourth
pair of Dean vortices appear (Fig. 4(m)). The fourth pair is formed
from the outer wall. The physical mechanisms responsible for the
appearance of the fourth pair and the second pair are different.
The flows on S5-5, S5-6 and S5-7 are 10-cell (Fig. 4(n) to (p)). Two
center vortices become weak on S5-7 as Dk value increases. Dean
vortices appear and change in the shape and size due to the flow
instability (Fig. 4(k) to (p)). The isovels and isotherms along the
inner wall and outer wall become inwash and outwash in the cor-
responding region with the clockwise-circulating and counter-
clockwise-circulating center vortices, similar to those in Fig. 5(g).

Symmetric branch S6. The primary branch S1 has a fourth
bifurcation point B4 at Dk = 1784.6 (De = 221.07) that originates a
symmetric branch S6. Branch S6 is divided into four sub-branches
S6-1–S6-4 by three limit points S1

6 � S3
6 (Fig. 3). The flow on S6-1 is a

2-cell structure, similar to that on S3-1, S4-1 and S5-1. The flow on
S6-2 is a 4-cell structure with one pair of Dean vortices in the
centeral part of the duct due to the Dean instability (Fig. 4(q)).
Limit point S2

6 leads these Dean vortices to split into three pairs
due to the Eckhaus instability [32]. The flow on S6-3 is thus an 8-cell
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structure (Fig. 4(r)). The limit point S3
6 leads these three pairs of

center cells on S6-3 to merge together due to the Eckhaus instability
(Fig. 4(s); [32]). The flow on S6-4 is a 4-cell structure. The isovels
and the isotherms change as Dean vortices occur, split apart and
merge together along the branch.

Symmetric branch S7. The branch S7 is divided into two sub-
branches S7-1 and S7-2 by one limit point S1

7 (Fig. 3). The flow on
S7-1 is a 10-cell structure (Fig. 4(t)). Ekman vortices have spanwise
extent about two or three times larger than that of the interior
Dean cells. The alternate clockwise- and counterclockwise-circu-
lating center vortices lead to wave-shaped isovels and isotherms,
similar to those in Fig. 5(g). The flow on S7-2 is 10-cell at low Dk va-
lue (Fig. 4(u)). With the increase of Dk value, the Dean vortices be-
tween Ekman vortices and center Dean cells become weak and
then merge together due to Eckhaus instability (Fig. 4(v) and
(w); [32]). Thus the flow on S7-2 becomes a 6-cell structure at high
Dk value. The streamwise velocity and temperature vary with the
secondary flow structures.
Asymmetric branch A1. The branch S4 has one symmetry-break-
ing bifurcation point B6 at Dk = 1077.46 (De = 136.11). This yields
an asymmetric solution branch A1. Branch A1 has one limit point
A1

1 that divides the branch into upper sub-branch A1-1 and lower
sub-branch A1-2 (Fig. 3). The solutions on A1-2 can be formed by
mirror images of corresponding solutions on A1-1 at the same Dk.
Fig. 4(x) and (y) illustrate typical secondary flows at two represen-
tative values of Dk on A1-1. The flow on A1-1 is a 7-cell structure at
low Dk value (Fig. 4(x)). With the increase of Dk value, the three
weak vortices merge into the strong ones nearby and the flow on
A1-1 becomes a 4-cell structure due to Eckhaus instability
(Fig. 4(y); [32]). Asymmetric secondary flow structures driven by
asymmetric pressure and centrifugal forces lead to asymmetric
streamwise velocity and temperature profiles.

Asymmetric branch A2. The branch S4 has another symmetry-
breaking bifurcation point B7 at Dk = 1003.38 (De = 125.57). It
originates an asymmetric solution branch A2 (Fig. 3). The flow on
A2 is an 8-cell structure at low Dk value (Fig. 4(z)). As Dk increases,
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two weak Dean vortices in the upper part of the duct become weak
and merge into the strong ones nearby due to Eckhaus instability
[32]. Thus the flow on A2 becomes a 6-cell structure at high Dk va-
lue (Fig. 4(a1)). The variation of the secondary flow structure leads
the streamwise velocity and temperature fields to change along the
branch.

Asymmetric branch A3. The branch S5 has a symmetry-breaking
bifurcation point B8 at Dk = 1184.18 (De = 142.64). It originates an
asymmetric closed solution branch A3 which is connected with S7

at bifurcation point B10 (Dk = 1201.25). Branch A3 is divided into
four sub-branches A3-1–A3-4, by four limit points A1

3—A4
3 (Fig. 3).

The flows on A3-1 and A3-2 are 10-cell asymmetric structures
(Fig. 4(a2)–(a3)). As Dk increases, the strength of the Dean vortices
on A3-2 changes, some cells become weaker while others become
stronger. The flow asymmetry becomes stronger due to the strong
instability. The asymmetry of the streamwise velocity and temper-
ature profiles becomes stronger at the same time. The solutions on
A3-3 and A3-4 can be formed by mirror images of corresponding
solutions on A3-2 and A3-1 at the same Dk respectively.

Asymmetric branch A4. The branch S5 has another symmetry-
breaking bifurcation point B9 at Dk = 1455.28 (De = 171.39),
originating an asymmetric solution branch A4. Branch A4 has one
limit point A1

4 that divides the branch into upper sub-branch A4-1

and lower sub-branch A4-2 (Fig. 3). The flow on A4 is a 10-cell
asymmetric structure (Fig. 4(a4) and (a5)). The solutions on A4-2

can be formed by mirror images of corresponding solutions on
A4-1 at the same Dk. With the increase of Dk value, the strength
of the Dean vortices changes. The streamwise velocity and temper-
ature fields change at the same time.

4.2. Flow stability and spectral analysis

The flow response to the disturbances depends on Dk values. As
Dk increases, the nonlinearity becomes stronger, thus the finite
random disturbances lead the flows from stable to unstable. To
examine the dynamic responses of the flows to different finite
random disturbances at different Dk values, a relatively compre-
hensive transient computation is made for 70 typical steady flows
with three sets of finite random disturbances with d = 10%, 15% and
30% respectively. We present the results obtained from the distur-
bance with d = 30%. To illustrate dynamic responses of multiple
flows to the finite random disturbances, the deviation of velocity
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components from their initial steady values is plotted against the
time s at (0.9, 0.14), (0.95, 0.10) and (0.70, 0.06). Radial (u-) and
spanwise (v-) velocity components for the first point (0.9, 0.14)
while only u- velocity component for the last two points (deviation
velocity (u’, v’) from its initial steady values) are plotted in all fig-
ures to facilitate the compassion. The power spectra of temporal
oscillations are constructed by the empirical mode decomposition
and the Hilbert spectral analysis to confirm the oscillating flow
states and reveal their characteristics.

Sub-range 1: stable steady 2-cell state (0 < Dk 6 876.95). Only one
solution exists at low Dk values due to the weak flow nonlinearity.
The typical responses of flows on S1 to the finite random distur-
bances in this sub-range are shown in Fig. 6. It is observed that
at Dk = 822 the deviation velocities vanish after a short period time
(Fig. 6). The velocity and temperature profiles return to their initial
steady 2-cell ones (similar to those in Fig. 4(a)). Therefore, the flow
on S1 is stable with respect to finite random disturbances in the
sub-range 0 < Dk 6 876.95.
Sub-range 2: another stable steady state (876.95 < Dk < 890). As
Dk value increases beyond 876.95 ðS1

2Þ, the stable branch transits
from S1 to S2-1. The dynamic responses of the flows at Dk = 885
on S1, S2-1 and S2-2 to the finite random disturbances are shown
in Fig. 7. It is observed that the deviation velocities vanish after
a short period time in Fig. 7(a). The velocity and temperature pro-
files return to their initial steady 2-cell ones (similar to those in
Fig. 4(a)). Therefore, the flows on S2-1 are stable with respect to fi-
nite random disturbances in the sub-range 876.95 < Dk < 890.
Fig. 7(b) and (c) illustrate the typical responses of the flows on
S1 and S2-2 to the finite random disturbance. It shows that the fi-
nite random disturbances lead the flows on S1 and S2-2 to the sta-
ble solution on S2-1 at the same Dk in this sub-range. This is also
be confirmed by our detailed check of flow and temperature
fields. Therefore, the flows on branch S1 and S2-2 are unstable to
the finite random disturbances and respond the disturbances by
evolving to the stable solution on S2-1 at the same Dk in this
sub-range.



Fig. 14. Empirical mode decomposition and Hilbert spectral analysis of the chaotic oscillation v (0.90, 0.14) on S2-2 at Dk = 1500 in Fig. 13(a) (10 6 s 6 25).
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Sub-range 3: periodic oscillations (8906 Dk 6 900). Fig. 8(a)
shows that the finite random disturbance lead the flow S2-2 at
Dk = 900 to oscillations with a period of 36.34. Fig. 8(b) shows
some typical secondary flow patterns within one period of oscilla-
tion in Fig. 8(a). It is observed that the temporal oscillation is
among symmetric/asymmetric 5-cell, 6-cell and 8-cell flows. Fur-
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ther study confirms that the flow and temperature fields within
one period of the oscillations are different at different Dk values
in the sub-range 890 6 Dk 6 900. Fig. 9 shows empirical mode
decomposition components and Hilbert spectral analysis for peri-
odic oscillation u (0.90, 0.14) on S2-2 at Dk = 900 in Fig. 8. It is
decomposed into six IMF components and a residue (Fig. 9(a)).
IMF components C1 to C3 contain fine scales. The dominant time
scale is represented by the fifth IMF component C5, a uniform per-
iod of approximately 36.34. This shows that the flow oscillation is
periodic. Low-frequency IMF component C6 represents the low-
intensity subharmonics. Residue R is a monotonic component.
The Hilbert marginal spectrum in Fig. 9(b) shows C3 and C4 carry
the most of energy in a large frequency range. The energy peak
of frequency 0.0275 Hz represents the temporal scale of the oscil-
lation, indicating the flow oscillation being periodic. There are also
some small amplitude noises that are possibly the signature of ini-
tial disturbances. Fig. 9(c) shows the Hilbert spectra of the oscilla-
tion and its IMF components. In the Hilbert spectra, the IMF
components C1 to C4 are represented by oscillatory lines indicating
that the frequencies vary with time. A detailed comparison among
components C1 to C4 and their Hilbert spectra shows that the flow
has uneven frequency variations even within one period, present-
ing intra-wave frequency modulations. C5 is an oscillation with a
nearly-constant frequency about 0.0275 Hz. C6 is a weak sub-har-
monic oscillation with low frequency. Therefore the periodic flow
oscillation consists of one dominant temporal oscillation, intra-
wave frequency modulations and one sub-harmonic oscillation.

Sub-range 4: intermittent oscillations (900 < Dk 6 980). As Dk
value increases, the stability of the flows changes. Fig. 10(a) shows
the dynamic responses of the flows on S4-4 at Dk = 910 and on S2-2

at Dk = 920 to the finite random disturbances. The finite random
disturbances lead the flows to intermittent oscillations. Fig. 10(b)
shows some typical secondary flow patterns in Fig. 10(a). It is
observed that the flow oscillates among symmetric/asymmetric
6-cell patterns during bursts, but 8-cell patterns during quasi-peri-
odic oscillations.

Sub-range 5: another periodic oscillations (980 < Dk 6 1350). The
dynamic response of the solution at Dk = 1000 on S2-1 is shown
in Fig. 11(a). The finite random disturbances here lead the flow
to a temporal periodic oscillation with a period of 0.39. Some typ-
ical secondary flow patterns are detailed in Fig. 11(b) within one
period of oscillation. It is observed that the temporal oscillations
are among asymmetric 8-cell, 9-cell and 10-cell flows. Fig. 12
shows empirical mode decomposition components and Hilbert
spectral analysis for periodic oscillation v (0.90, 0.14) on S2-1 at
Dk = 1000 in Fig. 11. It is decomposed into five IMF components
and a residue within the window 30 6 s 6 40 (Fig. 12(a)). The first
IMF component C1 contains the dominant time scale with the most
energy, a uniform period of approximately 0.39. Low-frequency
IMF components C2 to C5 represent the low-intensity subharmon-
ics. Residue R is a monotonic component. The Hilbert marginal
spectrum in Fig. 12(b) shows one energy peak at the dominant fre-
quency of 2.564 Hz, indicating the flow oscillation being periodic.
There are also some small amplitude noises, possibly the signature
of initial disturbances.

Sub-range 6: chaotic oscillations (Dk > 1350). The finite random
disturbances lead the flows in this sub-range to various chaotic
oscillations as shown in Fig. 13(a). Fig. 13(b) shows some typical
secondary flow patterns in Fig. 13(a). It is observed that the tempo-
ral oscillations are among asymmetric 10-cell, 11-cell and 12-cell
flows. It is observed that the temporal oscillations on different
branches at the same Dk are different. Fig. 14 shows empirical
mode decomposition components and Hilbert spectral analysis
for chaotic oscillation v (0.90, 0.14) on S2-2 at Dk = 1500 in
Fig. 13. It is decomposed into seven IMF components and a residue
within the window 10 6 s 6 25 (Fig. 14(a)). These IMF components
contain different time scales and amplitudes. The residual R is a
monotonic component. The Hilbert marginal spectrum in
Fig. 14(b) contains the broad-band noise, also indicating the flow
being chaotic. The Hilbert spectrum of the chaotic oscillation in
Fig. 14(c) shows that the frequencies of the oscillation vary
considerably.

Totally six sub-ranges are identified in the Dk range from 0 to
2000 according to the features of dynamic responses to finite ran-
dom disturbances. The first ranges from Dk = 0 to Dk = 876.95,
where the steady flow on S1 is stable. In the second sub-range
876.95 < Dk < 890, finite random disturbances lead all steady flows
to the stable steady 2-cell state on S2-1 at the same Dk value. The
third covers the range 890 6 Dk 6 900 where all steady flows
evolve to a periodic oscillation. The fourth sub-range is from
Dk = 900 to Dk = 980 where the flows respond to the finite random
disturbances in the form of temporal oscillations with intermit-
tency. In the fifth sub-range 980 < Dk 6 1350, the finite random
disturbances lead all solutions to another periodic solution. In
the last sub-range Dk > 1350, any finite random disturbance will
lead the flows to chaotic oscillation. Three sets of finite random
disturbances with d = 10%, 15% and 30% lead one steady flow to
the same state in the Dk range from 0 to 1350.
4.3. Friction factor and Nusselt number

The average friction factor and Nusselt number on various solu-
tion branches are shown in Fig. 15. Even for the same value of Dk
and in terms of their average values, both fRe and Nu are different
on different solution branches. Sub-branches with many strong
Dean vortices such as S4-6 and S7-1 have high values of fRe and
Nu. The sub-branches A1-1, A3-1, A3-2 and A4-1 have the same fRe
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and Nu values as their corresponding sub-branches A1-2, A3-4,
A3-3 and A4-2, which are formed by mirror images of A1-1, A3-1, A3-

2 and A4-1, respectively. Fig. 15 shows that at Dk = 2000 more than
22.33% increase in Nu can be obtained with less than 9.34% in-
crease in fRe due to high curvature ratio and Prandtl number. This
is of significant practical importance because the enhancement of
heat transfer is much stronger than the increase in the friction.

Fig. 16(a) shows the variations of the spatial mean friction
factor and the spatial mean Nusselt number with the Dk number
for the physically-realizable flows. For the periodic flows in
890 < Dk 6 900 and 980 < Dk 6 1350, the mean friction factor and
the mean Nusselt number in Fig. 16(a) are those averaged over
one period. They are also averaged over an enough-long period of
time for either intermittent flows in 900 < Dk 6 980 or chaotic
flows in Dk > 1350. For the oscillating flows in Dk > 890, both min-
imal and maximal values of the mean friction factor and the mean
Nusselt number are also shown in Fig. 16(a) with their typical
temporal oscillations shown in Fig. 16(b)–(e). The oscillation of
the friction factor can in turn induce the oscillation of pumping
system. In addition, the thermal stress oscillation caused by the
temperature oscillation may result in the failure of equipments
[23].
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When the flow shifts from stable steady state to temporal oscil-
lation, a drastic change in the mean Nusselt number is observed
(Fig. 16(a)). However, the mean friction factor increases quite
smoothly as Dk increases over the whole range. The transition of
mean friction factor and Nusselt number from the second periodic
oscillation to the chaotic oscillation is a smooth process. There ap-
pears no transition from laminar to turbulent flow for Dk up to
1500. Another very interesting feature is that the Nusselt number
is much higher than the friction factor for all Dk values, and the dif-
ference becomes more remarkable as Dk increases. We can there-
fore significantly enhance the heat transfer by the secondary
flow in tightly curved rectangular ducts at the expense of very
slight increase of resistance to the flow.

5. Concluding Remarks

A numerical study is made on the fully-developed forced
convection in tightly coiled rectangular ducts of aspect ratio 10
and curvature ratio 0.5 at Prandtl number 7.0. The governing
differential equations from the conservation laws are discretized
by the finite volume method and then solved for parameter-depen-
dence of flow and temperature fields by the Euler–Newton continu-
ation. The Dk number and the local variable are used as the control
parameters in tracing the branches. The test function and branch
switching technique are used to detect the bifurcation points and
switch the branch respectively. Eleven solution branches (seven
symmetric and four asymmetric) are found with 10 bifurcation
points and 27 limit points. The flows on these branches are with 2,
4, 6, 7, 8, 9 or 10-cell structures. The flow structures change along
the branch because of the flow instability.

The dynamic response of multiple flows and heat transfer to
finite random disturbances is examined by the direct transient com-
putation. The finite random disturbances lead the steady flows to a
stable symmetric 2-cell flow on S1 in 0 < Dk < 876.95, another stable
flow on S2-1 in 876.95 < Dk < 890, a periodic oscillation in 890 6
Dk 6 900, an intermittent oscillation among symmetric/asymmetric
8-cell flows between two bursts and among symmetric/asymmetric
6-cell flows during the burst in 900 < Dk 6 980, another periodic
oscillation among asymmetric 8-cell, 9-cell and 10-cell flows in
980 < Dk 6 1350 and a chaotic oscillation in 1350 < Dk 6 2000. The
flow stability changes along the solution branches even without
passing any bifurcation or limit points. Hilbert spectral analysis is
used to confirm the flow oscillation and reveal its features. Temporal
oscillation consists of simple intrinsic modes with different tempo-
ral scales and different energy. There is one IMF component with a
dominant time scale in a periodic oscillation, the phenomenon not
observed for intermittent and chaotic oscillations. The frequencies
of the chaotic oscillations vary considerably.

The average friction factor and Nusselt Number are different on
different solution branches. It is found that more than 22.33%
increase in Nu can be achieved with less than 9.34% increase in
fRe at Dk = 2000. Flow oscillations result in temporal oscillations
in the friction factor and the Nusselt number. The mean friction
factor and mean Nusselt Number are obtained for all physically-
realizable flows. A significant enhancement of heat transfer can
be obtained at the expense of a slightly increase of flow friction
in tightly coiled rectangular ducts.
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